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Abstract

This article focuses on the history of theoretical ideas but also on the devel-
opments of experimental tools. The experiments in our laboratory are used
to illustrate the various developments associated with Brownian movement.
In the first part of this review, we give an overview of the theory. We insist
on the pre-Einstein approach to the problem by Lord Rayleigh, Bachelier,
and Smoluchowski. In the second part, we detail the achievements of Per-
rin, measuring Avogadro’s number, quantifying the experimental observa-
tions of Brownian movement, and introducing the problem of continuous
curves without tangent, a precursor to fractal theory. The third part deals
with modern application of Brownian movement, escape from a fixed op-
tical trap, particle dynamics on a moving trap, and finally development of
Brownian thermal ratchets. Finally, we give a short overview of bacteria mo-
tion, presented like an active Brownian movement with very high effective
temperature.
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1. INTRODUCTION TO THE THEORY OF BROWNIAN MOVEMENT

Brownianmovement has an extraordinary history. It was first discovered by botanist Robert Brown
(1) in 1828.Looking at the grains of pollen dispersed in water, he noticed that they had an irregular
swarming motion. He thought that it was an example of life activity. Brown soon realized that it
had nothing to do with biology, as the effect was independent of the particle substance. It was just
a physics problem—a problem of a particle being bombarded by the surrounding water molecules.

Then experimental physicists took over. Gouy (2) in 1888 showed that the smaller the par-
ticle, the faster the activity, and he showed that the activity was independent of environmental
conditions by covering the liquid with a glass plate to avoid evaporation and keeping the bath at
constant temperature. Exner (3) in 1900 then showed that the motion depended on viscosity and
temperature. It was simply a temperature problem. The time was free for a theoretical effort of
what has been denominated Brownian movement.

Amazingly the very first paper related to this problem was by Lord Rayleigh (4) in 1891, in
which, in his theory of gases, he studied the state of a free mass under bombardment by projectiles
striking with velocity v and moving independently in two directions; this was, of course, posed as
a one-dimensional (1D) problem.

The first theoretical interpretation came from a physicist studying speculation in the stock
market in 1900, Louis Bachelier (5). A stock is seen as a Brownian object bombarded by fast buy-
ing and selling activity; it is thus a model of the fluctuations in stock price. As described by Davis
& Etheridge (6), Bachelier argued that the small fluctuations in price over short times are inde-
pendent of the price value and independent of past behavior, and deduced that increments are
independent and normally distributed. It is the diffusion limit of a random walk. This remark-
able study was essentially ignored until rediscovered in the 1960s by Savage, a mathematician, and
Samuelson, an economist.

Then in 1905 came the heavy players, Smoluchowski (7) and Einstein (8). Einstein developed a
bold theory in which the force on the particle comes from osmotic pressure, following themolecu-
lar theory of heat, and the particle resistance to motion from the Stokes force. Einstein was merely
interested in the long-time solution and found for the solution a diffusion equation. It was a pure
thermodynamic study, and he assumed elastic collisions for particles and high viscosity. The main
results of that Brownian theory are that the mean-square displacement 〈x2〉 suffered by a spherical
Brownian particle, of radius a, in time t is given by

〈
x2

〉 =
(

RT
3πNavaη

)
t, 1.

where T is the temperature, η is the viscosity of the fluid, R is the gas constant and Nav is the
Avogadro number.

The second important result was his derivation of the diffusion equation for the probability of
the particle being at position x at time t:

∂P
∂t

= D
∂2P
∂x2

. 2.

The solution of the diffusion equation was given by

P (x, t ) = 1[
2πσ 2 (t )

]1/2 e−x2/(2σ 2 ) , 3.

where σ 2(t ) = 2Dt, and D is the particle diffusion coefficient.
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Smoluchowski was more careful using a probabilistic approach. He found that the transition
from ballistic motion to diffusive motion occurs for the particle at a timescale of 10−8 s. The diffu-
sion equations derived from the Einstein and Smoluchowski treatments are mathematically simi-
lar, but Smoluchowski’s equation defines a concentration-dependent diffusion coefficient, whereas
in Einstein’s it is a constant. Also, Smoluchowski derived the diffusion equation in the presence of
a force F, where f is a friction coefficient:

∂P
∂t

= − 1
f

∂

∂x
(PF ) + D

∂2P
∂x2

. 4.

This is now called the Smoluchowski equation.
Again, and as usual in this problem, a new surprise came from a much simpler theoretical

approach proposed in 1908 by Langevin (9, 10). In his one-page paper, he derived a dynamic
equation with viscosity as the damping force and a necessary white noise–type fluctuating force X
that was supposed to sustain the movement. This is the famous Langevin equation. Let us follow
Langevin’s paper.

If ξ = dx
dt is the speed, at a given instant, of the particle in the direction that is considered, then

one has, for the average, extending to many identical particles of mass m,

mξ 2 = RT
N

, 5.

and

m
dx2

dt2
= −6πμa

dx
dt

+ X . 6.

If we consider a particle to be large with respect to the average distance between the molecules of
water moving in a fluid, and the motion is caused by temperature, then the particle experiences a
Stokes drag force. This value is only a mean, given the irregularities of the impact of surrounding
molecules, and the fluid action oscillates. This force X is indifferently positive or negative and its
magnitude maintains the agitation of the particle; otherwise the viscous resistance will make the
particle stop moving. Various models have been proposed for this force X .

The fluctuating force X is an unknown that is open to many possibilities. If one follows energy
equipartition, thenX is a white noise force.Langevinwithin these premises could deduceEinstein’s
equation.

Finally, in 1925 Paul Levy (11) generalized the Brownian movement concept. The, by now,
standard Levy walk is performed by a particle that moves in a ballistic trajectory between randomly
occurring collisions and where the intercollision time is a random variable governed by a power-
law distribution. It leads to

〈x2〉 = tμ, 7.

where μ is larger or smaller than 1. Later, in 1947, M. Kac (12) presented a discrete approach for
a random walk model for the Brownian particle.

2. JEAN PERRIN’S PRECISE EXPERIMENT AND CONCEPTS LEADING
TO THE IDEA OF FRACTALS (1913)

Jean Perrin (13, p. 3) first acknowledged the acuteness of the theoretical physicists. Physicists
thought that the Brownian phenomenon was
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a b

Figure 1

(a) Pattern obtained for the same mastic of grains by considering only grains starting from the same point. The idea of this
representation came from Langevin (14). (b) Consecutive positions occupied by mastic grain of radius 0.53 µm. Complete irregularity
of the agitation was described by Perrin. Figure adapted from Reference 14 with permission.

analogous to the movement of the dust particles, which can be seen dancing in a ray of sun light,
under the influence of feeble currents of air which set up small differences of pressure or temperature.
When we reflect that this apparent explanation was able to satisfy even thoughtful minds, we ought the
more to admire the acuteness of those physicists, who have recognised in this, supposed insignificant,
phenomenon a fundamental property of matter.

Perrin (13) undertook a systematic study of Brownian motion (see Figure 1). But his aim was first
to measure the Avogadro number, which is part of the theory (Equation 1).

Using the newly developed ultramicroscope, Perrin carefully observed the sedimentation of
particles of gamboge, a latex, monodisperse to within 1%. This provided experimental confirma-
tion of Einstein’s equations. Perrin’s observations also enabled him to estimate the size of water
molecules and atoms as well as their number. He got for the Avogadro number the value

Nav = 7.05 × 1023, 8.

which is not far from the precise value, 6.02 × 1023.
This was an answer to Einstein’s doctoral thesis (15). There Einstein proposed to measure the

Avogadro number as a confirmation of the atomic theory. This atomic theory was indeed seriously
contested at that time, mainly by Mach and Ostwald.

For example,Ostwald (16, p. 471) wrote in 1909: “I have convincedmyself that we have recently
come into possession of experimental proof of the discrete or grainy nature of matter, for which
the atomic hypothesis had vainly been sought for centuries….”
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In 1913 after Perrin’s results, Poincaré (17, pp. 89–90) wrote,

atoms are no longer a convenient fiction; it seems, so to speak, that we see them since we know how
to count them…. The brilliant determinations of the number of atoms computed by Mr. Perrin have
completed the triumph of atomism…. The atom of the chemist is now a reality….

This was the first time the size of atoms and molecules could be reliably calculated from visual
observations. At that time, it raised atoms from useful hypothetical objects to observable entities.

Perrin then developed a systematic study of the particle trajectories and could confirm that
the mean square displacement is proportional to time. But some experimental results were raising
some doubts about Einstein’s theory, and Perrin (14, p. 121) noticed:

I have been very much struck by the readiness with which at that time it was assumed that the theory
rested upon some unsupported hypothesis. I am convinced by this of how limited at bottom is our faith
in theories; we regard them as instruments useful in discovery rather than actual demonstrations of
fact.

Finally, in the introduction to his book Atoms (14), Perrin made some fascinating proposals. The
problem of continuous curves without tangents is usually a pure mathematical problem. Perrin
proposed that, in fact, in physical situations, one is dealing with continuous curves presenting no
tangents. The theory was later developed by Benoit Mandelbrot (18, 19).

Perrin (14, pp. IX–X; emphasis in original) wrote:

We must bear in mind that the uncertainty as to the position of the tangent plane at a point on the
contour is by no means of the same order as the uncertainty involved, according to the scale of the map
used, in fixing a tangent at a point on the coast line of Brittany.The tangent would be different according
to the scale, but a tangent could always be found, for a map is a conventional diagram in which, by
construction, every line has a tangent. An essential characteristic of our flake (and, indeed, of the coast
line also when, instead of studying it as a map, we observe the line itself at various distances from it) is,
on the contrary, that on any scale we suspect, without seeing them clearly, details that absolutely prohibit
the fixing of a tangent.

We are still in the realm of experimental reality when, under the microscope, we observe the Brow-
nian movement agitating each small particle suspended in a fluid…. An unprejudiced observer would
therefore come to the conclusion that he is dealing with an underived function, instead of a curve to
which a tangent could be drawn.

This example of the coast of Brittany proposed by Perrin had an echo, 50 years later, in Mandel-
brot’s paper (18) entitled “How Long Is the Coast of Britain?” followed by Mandelbrot’s intro-
duction to fractal dimension (19).

3. PLAYING WITH BROWNIAN OBJECTS AFTER 1970

This is not the end of the problem but a new beginning. It restarted in the 1950s when biologists
realized that several biological objects of micrometer size show, on long timescales, a Brownian
behavior; the main bacterium Escherichia coli is micron sized and showed diffusion over long times,
but over short times, up to 1 s, the movement is not diffusive. It opened the study of active Brown-
ian movement where, through mechanical energy expenditure, not kT , a lot of active motion is
present. Howard Berg’s (20, 21) work is preeminent in this area. His work even opened the door
to single-molecule biophysics.
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Later, starting in 1970, several new techniques were developed to greatly improve microscope
techniques. In addition, forces could be applied and measured. A new probe covered the range
of 1 to 100 pN; it is called optical tweezers (22, 23). To provide some scale, kT corresponds to a
fluctuating force of the order of 1 pN. Later magnetic tweezers (24) were also developed.

Optical trapping is conceptually simple. A dielectric object in an electric field is polarized.
In the presence of an electric field gradient, the polarized particle moves toward the region of
highest field. The transverse Gaussian intensity profile across the width of the beam pulls the
object toward the beam axis. To counter the destabilizing radiation pressure, one sharply focuses
the laser, imposing an electric field gradient along the beam direction.

Thus, the Brownian object became again an experimental field of study, as it could be manipu-
lated and measured with precision down to 0.1 µm, which is an ideal size for Brownian particles.

3.1. Brownian Movement in a Force Field

With optical tweezers it is easy to trap a Brownian particle. A particle caught in a potential hole
that, through the shuttling action of Brownian movement, can escape over a potential barrier
yields a suitable model for elucidating chemical reaction kinetics. In his seminal work, Kramers
(25) considered the escape of a particle over a potential barrier, as shown in Figure 2.

He found for the particle mean residence, also called Kramers time τ̄k,

τ̄k ∼= τR eQ/kT , 9.

where τR is the relaxation time for the particle to fall into the potential well, and Q is the barrier
height. Both τ̄k and τR can be measured, and from those measurements one can deduce the valueQ

U(q)

B

A
C q

Q

Figure 2

Potential field with smooth barrier as described by Kramers (25). To escape over the potential barrier, the
particle trapped in well A must be thermally activated to overcome the barrier C of height Q and reach B.
Figure adapted from Reference 25, p. 291. Copyright 1940 with permission from Elsevier.
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of the barrier height. Kramers also found that the residence times in the well have an exponential
distribution from which the mean Kramers time, τ̄k, can be calculated.

Experiments are conceptually simple (26). Localize a Brownian particle in a double po-
tential well and observe the thermally driven escape from one well to the other, as shown in
Figure 3a. The particle is trapped in a bistable potential well of interwell spacing d and barrier
height Q. Figure 3b shows typical escape events, from which an exponential probability distri-
bution is measured (Figure 3c), as is, thus, a mean residence time. It is typically of the order
of seconds in our setup. The relaxation time of the particle in the well τR is more difficult to
estimate: It is on the order of 0.1 s, and in this experiment Q is of the order of a few kT . This was
another direct confirmation of Kramers’s theory.

The next step was to test Benzi et al.’s (28) stochastic resonance hypothesis. This occurs when
the two wells are modulated asymmetrically, i.e., one up and one down and then vice versa.
When the modulation time is equal to the Kramers escape time, a resonance occurs for the
probability of escape. We have now three times: the mean Kramers time, τ̄k; the well relaxation
time, τR; and a modulation period, τ . One usually observes synchronization with harmonics for
τ̄k < τ (Figure 4a). But when τ = τ̄k one observes a resonance with no harmonics (Figure 4b)
corresponding to stochastic resonance. This experiment is the physical realization of Benzi’s and
Parisi’s ideas (28).

3.2. Brownian Particles in a Rotating Optical Trap with Periodic Forcing

When trying to move an optical trap with a particle in it (29), as shown in Figure 5a, the viscous
drag, proportional to the particle velocity, will eventually cause the particle to exit from the trap.
In our geometry (10- to 20-mm diameter, around 10-Hz rotation frequency), the trap always
returns before the particle diffuses away (short times for the trap return, long times for the particle
diffusion). It confines the particle motion to one dimension, a circle (Figure 5a). The typical
scenario, as the trap velocity increases, is as follows: For a small velocity the drag force is smaller
than the trapping force, and the particle follows the rotating beam. It is a phase locked regime.
For larger velocities, the particle escapes but does not have enough time to diffuse away from the
circle; it keeps rotating, but at the smaller mean velocity than the tweezer. It is a phase slip regime
(Figure 5b). Finally, for much higher rotation velocity (Figure 5c), no net angular motion is
observed, and the particle diffuses freely on the circle.The system thus evolves from a synchronous
motor to an asynchronous one and, finally, to a free diffusive motion, but always localized on the
circle. So, on any closed optical trap trajectory the particle will remain in that trajectory, and this is
valid for any reasonable rotation speed. This is a surprising and very explicit method for studying
Brownian movement in one dimension.

3.3. The Brownian Thermal Ratchet

Starting in the 1940s, biologists discovered that some proteins are molecular machines that con-
vert the chemical energy from ATP hydrolysis to mechanical work (30–32). They move along
tracks made of actin filaments or microtubules. Intense study by physicists followed to understand
the functioning of the motor proteins. Among many models, an interesting one was the Brown-
ian thermal ratchet (33–35). It is based on Brownian particles that are diffusing and is regularly
submitted to an asymmetric space periodic force, as shown in Figure 6.

In the absence of external forces, Brownian particles do not experience any macroscopic drift.
In a similar way, a spatially periodic external potential, asymmetric or not, does not induce large-
scale motion, as the associated large-scale gradient (force) is zero. However, a time modulation
between the two regimes (free diffusion, applied potential) inducesmacroscopic drifts of Brownian
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Figure 3

(a) Geometry and schematic of the double well. a is a bead radius,Q is the barrier height, and d is the
distance between the wells. (b) The position of the particle as it escapes from +c to −c well. The set of first
passage times {τi} between escape events determines the probability distribution. (c) Probability distribution
for residence times in the well. Panels a and c adapted with permission from Reference 26, pp. 3376–77.
Copyright 1992 by the American Physical Society. Panel b adapted from Reference 27 with permission.
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Figure 4

Probability distribution with a modulation applied to the double well. (a) The Kramers escape time τ̄k is smaller than the modulation
time τ . This is a fundamental view of many harmonics. (b) Resonance, with no harmonics, for τ̄k = τ . Panel a adapted from
Reference 27 with permission. Panel b adapted with permission from Reference 26, p. 3377. Copyright 1992 by the American Physical
Society.

particles when the potential is asymmetric.Other mechanisms of motion have also been proposed.
The principle as shown in Figure 6 is the following: The field traps the particles in the potential
minima. They freely diffuse when the field is off. When the field is switched on again after a
modulation time τmod, the particles follow the local gradient of potential and get trapped in the
corresponding minimum. Given the asymmetry of the potential, the particles’ average diffusion
time over the right-hand barrier is shorter than over the left-hand one; thus trapping into the
right-hand well is preferred. Repeating this process induces a macroscopic drift of particles from
left to right. The induced drift is a function of the diffusion coefficient of the particles and the
modulation time of the applied field: For small τmod, the drift is zero, and the particle does not
have enough time to diffuse to the next minimum. For large τmod, the particle diffuses to the
forward and backward minima with equal probability ½. In between there is a maximum for the
drift, which is somewhat related to stochastic resonance.

The forward and backward probabilities can be estimated as

Pf ≈ 1
2
exp

( −τf

τmod

)
10.

and

Pb ≈ 1
2
exp

( −τb

τmod

)
, 11.

where the characteristic diffusive times τf and τb, over the lengths λf and λb, are

τf = (
λ2
f /2D

)
12.

and

τb = (
λ2
b/2D

)
. 13.
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Figure 5

(a) Rotation of the optical trap along a circle of diameter 7 µm. The particle follows the trap. (b) Time series
of the particle angular displacement, with trap rotation frequency of 5.5 Hz and output laser power of
700 mW. Escape times are clearly visible. (c) Root mean square value of the particle angular displacement as
a function of time, with trap frequency of 100 Hz. The straight line indicates a power law with exponent ½
showing diffusion. Figure adapted with permission from Reference 29, pp. 5241, 5243–44. Copyright 1995
by the American Physical Society.

3.4. An Optical Thermal Ratchet

In Section 3.2, we showed how to produce a 1D Brownian motion for a trapped particle, with the
trap created by an optical tweezer. If that trap is moving fast enough on a circle the particle will
diffuse on the track trajectory, as shown in Figure 5c. One can use this remarkable result to build
an optical model based on Brownian movement. If now one modulates the tweezer light intensity
with a special asymmetric amplitude modulation (Figure 7), the particle gets localized in a region
of maximum beam intensity (37, 38).

When the modulation amplitude is off, but the light on, the particle diffuses. Giving enough
time for the diffusion, τoff, the particle will eventually advance in only one direction as the mod-
ulation is turned on again. Given the probabilities forward and backward, Pf and Pb (Figure 8a),
as a function of the time off, τoff, the difference, Pf − Pb, will measure the motion.
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τ = 0

τ < τoff

τ = τoff

λb λf

Pb Pf λ(1–Pb–Pf)

a

b

c

Figure 6

Illustration of asymmetric potential (thick lines) and particle probability densities (thin lines). λb and λf are the
lengths of the asymmetric potential. (a) At time τ = 0 the particle is localized, and the probability density is
sharply peaked. (b) For times τ < τoff, the potential is off and the particle diffuses freely. (c) At time τ = τoff,
the potential is back on and the particle is forced into forward and backward directions with probabilities Pf
and Pb. Figure adapted with permission from Reference 37, p. 1504. Copyright 1995 by the American
Physical Society.

There is an optimal τoff for maximum displacement (Figure 8b). We note that it is only on
average that the particle motion follows the drift.

So, breaking spatial symmetry and introducing modulation in time are enough to induce direct
motion from a random Brownian noise. An optical asynchronous motor functioning on Brownian
noise is thus being constructed. The relationship to biological molecular motors is not clear, to
say the least (34, 35).

4. ACTIVE BROWNIAN MOVEMENT

In this article, we started our description with Brown’s 1828 observation of particles moving
stochastically. Brown, in his first observation, attributed the motion to life activity until it became
obvious that it was a physics problem of stochastic thermodynamics.

Moving now full circle, we come back to the motion of living organisms. Richards (36, p. 63)
noted that there are two types of problems: “There are problems that one poses, and there are
problems that pose themselves.” Brownian motion was a problem that posed itself. We are now
studying a problem that we pose: What about Brownian motion for living bacteria? The model
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Figure 7

The spatially asymmetric modulation of the beam intensity along the circle traced by the optical trap is
shown as a thin solid line (four modulations per optical trap cycle). When the modulation is on (a), the
1.5-µm-diameter bead is localized in a region of maximum beam intensity. When the modulation is off (b),
the beam intensity is constant and the particle diffuses freely along the circle. Given enough off time (c), the
next time the modulation is on the particle moves to the right. Figure adapted with permission from
Reference 37, p. 1505. Copyright 1995 by the American Physical Society.

system is that of the typical E. coli bacterium, which is of typical Brownian size, one micrometer. A
systematic study of E. coli dynamics was undertaken byHoward Berg and is well documented in his
two books (39, 40). A quite remarkable paper by Purcell, titled “Life at Low Reynolds Number”
(41), is a gem of pedagogical literature. It introduces all that is necessary to understand hydrody-
namics at the micron-scale level.What was observed was that, indeed, on a long timescale of more
than 1 s, bacteria behave like Brownian objects, diffusing but with an effective temperature close
to 1,000 K. In the following, we describe experiments in our laboratory related to this problem.
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Figure 8

(a) The probabilities for the particle to move forward or backward as a function of τoff. The two solid lines are theoretical fits. (b) The
drift probability, i.e., the difference between the two curves in panel a. Figure adapted with permission from Reference 37, p. 1506.
Copyright 1995 by the American Physical Society.

4.1. Brownian Particle Diffusion in a Two-Dimensional Bacteria Bath

What happens to the Brownian movement of a particle in a sea of bacteria instead of a sea of
water? This is the question we asked ourselves (42). We thus redefine Brownian movement but
in a bacteria bath. We used particles of 10 µm in size so that they have essentially no visible
Brownian movement. We constructed a two-dimensional (2D) setup using a free suspended hor-
izontal soap film, where the water thickness is about a few microns. In it we suspended a small
number of 10-µm beads and a high concentration of E. coli, N = 51010 cell/cm3, which is about
10% of the total volume, and we studied the beads’ dynamics. For long timescales, above 10 s,
normal diffusion was observed (Figure 9), whereas for short timescales the mean square displace-
ment was super diffusive (Figure 9c). We also observed transient formation of coherent swirls
and jets in the bacteria bath. This critical time τc between the two regimes increases linearly with
bacteria density. Also, the diffusive character of the bead was associated with an effective temper-
ature of about 1,000 K. The bacteria velocity distribution did follow a Maxwellian velocity with
mean velocity of 20 µm per second, which is a typical velocity for E. coli. The bacteria behaved
as if they were in a three-dimensional (3D) cell. What was striking is that the positions of the
10-µm beads fluctuated strongly on distances of more than 100 µm. Thus, on short timescales,
the 10-µm particle motion showed certain persistent behavior with some ballistic motion
(Figure 9a) and a super diffusive motion with an exponent ∝ = 1.5. For timescales greater than
10 s, the particle motion proved to be pure diffusion with a diffusion coefficientDT = 10−9cm2/s.
This implies that the effective temperature of the bacteria is about 100 times greater than room
temperature.

Grégoire et al. (43, 44) undertook a theoretical analysis of this stunning experiment.A Langevin
equation will not suffice as it would introduce a transition between diffusion and ballistic motion
that is not observed. Grégoire took a model originally proposed by Viscek et al. (45), who would
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Figure 9

(a) Motion of two 10-µm beads followed for 20 s. (b) The same beads followed for 3 min. (c) The mean
square displacement measurement for 4.5- and 10-µm beads (squares and circles, respectively). The solid
lines guide the eye. Figure adapted with permission from Reference 42, p. 3018. Copyright 2000 by the
American Physical Society.
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FlagellaFlagella

f0

ω0

ϕ

U

α

Figure 10

Cell along a glass plate positioned at a small distance U from the plate. The finite angle φ indicates motion.
The water flow field is shown by the two dashed lines and arrows. ω0 is the angular velocity imposed by the
flagella, and f0 is its force. Figure adapted from Reference 50 with permission.

reproduce the experimental result. It is called the self-propelled XY spin. In the experiment one
could also observe collective motion in the bacteria bath such as short-lifetime swirls and jets.

4.2. Rotating Crystals of Bacteria

Let us move finally to Thiovulum majus, a very peculiar bacterium particularly because of its size,
10 µm in diameter, and its fast swimming velocity, up to 600 µm/s, caused by an enormously large
number of flagella, around 400. It might be the fastest known living bacteria. The bacterium was
purified after extraction by A. Petroff from the salt marshes near Woods Hole, Massachusetts. It
is a sulfur oxidating bacterium (46). What is remarkable about this bacterium (Figure 10) is that
when a colony of bacteria is confined between a glass slide and a coverslip, the cells localize on the
glass surfaces and diffuse along the glass plate like an active Brownian object; when two bacteria
are within the distance of their size, they dimerize and rotate with respect to each other. Slowly,
a rotating 2D crystal grows (47). Similar phenomena have also been observed in sperms (48) and
Volvox (49).

Figure 10 shows a sketch of the cell localized near a glass plate (50). The cell motion is char-
acterized by the cell radius, α, the flagellar force, f0, and the angular velocity, ω0.

Two important parameters are the gap thicknessU between the cell and wall (tens of nanome-
ters) and the orientation of the flagella relative to the minimal φ. For φ = 0 the cell does not
move. For any change in angle, a force f0 sinφ is applied, causing the cell to move. As this angle
keeps fluctuating, the cell develops a random motion, Brownian type (Figure 11b) with an effec-
tive temperature of 4104 K. If one bound cell approaches another within 15 µm, they are pulled
into a dimer, i.e., the nucleus for crystal formation.

The physics of the problem is simple.Near a plate, at a distanceU , the cell induces a large-scale
flow along the plate (see Figure 10). This flow attracts a nearby cell. Due to the angular velocity
of each cell, caused by the flagella, the particles rotate with respect to each other.

When crystallization develops (Figure 12) the whole crystal rotates. This active Brownian
object is an interesting case of a bacterium bound to a plate, caused only by hydrodynamic inter-
action, and creating a small gapU between the bacterium and the plate. This is a beautiful applied
mathematics question. It is a pure exercise of hydrodynamics with no apparent chemostasis or
chemical attractants.
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(a) Distribution of instantaneous velocities taken from 922,360 measurements. (b) Mean square displacement fit to linear diffusion (black
line). Figure adapted from Reference 50 with permission.

10 µm

Figure 12

A large bacterial crystal in dark-field illumination. The bright glow of individual cells is caused by light
scattering off the sulfur globules present inside the bacteria. Differences in cell illumination are caused by
different amounts of globules. The bacterium diameter is about 8 µm. The classical six-fold symmetry of
two-dimensional crystals is visible as well as are some facets. Figure adapted with permission from
Reference 47, p. 2. Copyright 2015 by the American Physical Society.
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5. CONCLUSION

It is rare in physics to find a simple phenomenon not only active for almost 200 years but also
still very present. This is the case with Brownian movement. Agitation of a micron-scale parti-
cle in water seems a simple phenomenon and looks trivial, but as Perrin noticed some profound
scientists realized that behind the phenomenon lay a deep question of statistical physics. It also
led to solving the nagging question of whether the atomic theory was just an abstract concept or
a reality. Einstein’s PhD thesis addressed just this problem and showed that Avogadro’s number
could be measured, and this would justify the atomic theory. This was one of Perrin’s successful
experiments, as hemeasured Avogadro’s number in a study that was a tour de force, having tomake
reasonably monodisperse mastic from particles of ∼1 µm in size. The other beautiful remark of
Perrin, following his observation of Brownian movement, was to propose that continuous func-
tions without derivative were a common problem in physics. In doing that, and using the coast
of Britanny to illustrate it, Perrin’s intuition was exceptional. It opened, 50 years in advance, the
theory of fractals. But the Brownian problem also brought some interesting new formalisms, like
the Langevin equation and his famous fluctuating X function, white noise if equipartition but
color otherwise. Let us also note that it allowed Levy & Loeve (11) to introduce another type of
fluctuating motion, the Levy walks, to successfully understand foraging in biology (51). Another
fascinating aspect of the problemwas how Bachelier, before Einstein and Smoluchowski, proposed
a close-by solution by studying the fluctuation in the stock market of a stock perturbed by bom-
bardment of buying and selling. In doing so, Bachelier became the grandfather of mathematical
finance (6).

The subject was reopened in the 1970s, when new techniques were developed to manipulate
Brownian objects. The discovery of a new tool, the optical tweezer by Ashkin (22), opened a lot
of possibilities, as it allowed the trapping of particles and moving them. Kramers’s theory (25) of
chemical reactions was easily checked by studying Brownian particle escape from an optical trap.
Experiments on the synchronization of the escape led to stochastic resonance (28).The realization
of stochastic thermal ratchets based on Brownian movement, as proposed by Prost et al. (34) and
Magnasco (35), was also achieved.

Another development came from biology. In 1828, Brownian motion was considered a biolog-
ical active phenomenon until it was understood that it was a physics problem. But now, following
the pioneering work of Howard Berg (39, 40) on bacteria motion, bacteria of micron scale and
evenmotor proteins (52, 53) have on long timescales a diffusion behavior that is Brownian-like but
with an effective temperature of thousands of degrees Kelvin. To give clarity on the experimental
scale, Brownian movement relates to kT energy, which is on the order of 1 pN of fluctuating force,
whereas the force of bacterium flagellum is of the order of 50 to 100 pN. This explains the high
effective temperature of bacteria diffusion.

Finally, following Purcell (41), let us review some relevant numbers. We are dealing here with
small objects in water. In a fluid, an important characteristic force is of dimension η2/ρ , where η

is the fluid viscosity, and ρ is its density. Its value for water is 10−9 pN, a nanonewton. When this
force is applied, the Reynolds number for the object is equal to one (equate this force to Stokes
force, η2/ρ = ηav). But, in our problem, we are dealing with objects, or bacteria, of 1 µm in size
moving in water with small velocities, on the order of 10 µm/s, so their Reynolds number in water
is of order 10−5. We are thus dealing with much smaller forces than a nanonewton; we are in a
piconewton-force range. It is a world where there is no inertia, where in order tomove a bacterium
must screw up its rotating flagellum into the surrounding water. Our world is very dissipative with
small applied forces and very large Brownian fluctuations. Clever algorithms must be deployed to
compensate for those harsh environments. This is the world described in this review.
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This opening to the bacterial world opens new directions. Soils have a high density of bacte-
ria, about one bacterium every 10 µm. High-energy photons from the Sun allow cyanobacteria
to break water and produce oxygen; purple sulfur bacteria metabolism is related to infrared ab-
sorption; sulfur-oxidation bacteria respond to the oxygen gradient by burning H2S; and sulfur-
reducing bacteria produce this H2S from the atmosphere SO4 gradient. All those gradients pro-
duce a stable stratification (46). This extraordinary bacteria richness will bring new phenomena
as was shown by Petroff et al. studying T. majus crystals (47).
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